Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 66, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459557

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE: While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS: To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS: Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS: Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/metabolism , Microglia/metabolism , Gliosis/genetics , Gliosis/metabolism , Proteomics , Corpus Striatum/metabolism , Disease Models, Animal , Mice, Transgenic , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
2.
Nat Commun ; 14(1): 5877, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735167

ABSTRACT

All-optical switches control the amplitude, phase, and polarization of light using optical control pulses. They can operate at ultrafast timescales - essential for technology-driven applications like optical computing, and fundamental studies like time-reflection. Conventional all-optical switches have a fixed switching time, but this work demonstrates that the response-time can be controlled by selectively controlling the light-matter-interaction in so-called fast and slow materials. The bi-material switch has a nanosecond response when the probe interacts strongly with titanium nitride near its epsilon-near-zero (ENZ) wavelength. The response-time speeds up over two orders of magnitude with increasing probe-wavelength, as light's interaction with the faster Aluminum-doped zinc oxide (AZO) increases, eventually reaching the picosecond-scale near AZO's ENZ-regime. This scheme provides several additional degrees of freedom for switching time control, such as probe-polarization and incident angle, and the pump-wavelength. This approach could lead to new functionalities within key applications in multiband transmission, optical computing, and nonlinear optics.

3.
BMJ Open ; 13(7): e068633, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524557

ABSTRACT

OBJECTIVE: This explorative study aims to identify the gaps in COVID-19 management and their consequences on physicians in terms of contracting infection and psychological well-being during the early phase of the pandemic. DESIGN, SETTINGS AND PARTICIPANTS: We conducted a nationwide cross-sectional online study to collect information from 420 intern doctors who were at their internship in government medical colleges from February to August 2020. METHODS: We performed univariate and bivariate analyses to assess COVID-19 management. We investigated the consequences of COVID-19 management on infection risk, experiencing stress, developing anxiety, depression and sleep disturbance using five sets of multivariable logistic regression analyses. RESULTS: Findings indicate a delay in first-case detection and identify people's tendency to hide COVID-19 symptoms as one of the possible causes of that delay. About 56% of the intern doctors experienced that patients were trying to hide COVID-19 symptoms in the earlier phase of the pandemic. More than half of the respondents did not get any training on COVID-19 from their working institutions. About 30% and 20% of the respondents did not use personal protective equipment (PPE) and masks while treating patients. Respondents who treated patients without PPE, masks, face shields and gloves were almost two times as likely to be infected by COVID-19. The odds of experiencing COVID-19-related stress was almost twofold among respondents who treated patients without wearing PPE and masks. Experiencing COVID-19-related stress was further associated with an increased risk of developing anxiety and depression that led to sleep disturbance. CONCLUSION: Ensuring the maximum utilization of limited resources during any public health crisis such as COVID-19 needs developing coping mechanisms by projecting future demand. Ensuring proper training and safety measures can reduce physical and psychological hazards among physicians.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , SARS-CoV-2 , Bangladesh/epidemiology , Delivery of Health Care
4.
Nat Commun ; 14(1): 397, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36693860

ABSTRACT

Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.

5.
Nano Lett ; 23(1): 25-33, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36383034

ABSTRACT

The negatively charged boron vacancy (VB-) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, VB- preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications. Studies have reported improving the overall quantum efficiency of VB- defects with plasmonics; however, the overall enhancements of up to 17 times reported to date are relatively modest. Here, we demonstrate much higher emission enhancements of VB- with low-loss nanopatch antennas (NPAs). An overall intensity enhancement of up to 250 times is observed, corresponding to an actual emission enhancement of ∼1685 times by the NPA, along with preserved optically detected magnetic resonance contrast. Our results establish NPA-coupled VB- defects as high-resolution magnetic field sensors and provide a promising approach to obtaining single VB- defects.

6.
Adv Mater ; 35(34): e2109546, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35917390

ABSTRACT

The unique properties of the emerging photonic materials, conducting nitrides and oxides, especially their tailorability, large damage thresholds, and, importantly, the so-called epsilon-near-zero (ENZ) behavior, have enabled novel photonic phenomena spanning optical circuitry, tunable metasurfaces, and nonlinear optical devices. This work explores direct control of the optical properties of polycrystalline titanium nitride (TiN) and aluminum-doped zinc oxide (AZO) by tailoring the film thickness, and their potential for ENZ-enhanced photonic applications. This study demonstrates that TiN-AZO bilayers support Ferrell-Berreman modes using the thickness-dependent ENZ resonances in the AZO films operating in the telecom wavelengths spanning from 1470 to 1750 nm. The bilayer stacks also act as strong light absorbers in the ultraviolet regime using the radiative ENZ modes and the Fabry-Perot modes in the constituent TiN films. The studied Berreman resonators exhibit optically induced reflectance modulation of 15% with picosecond response time. Together with the optical response tailorability of conducting oxides and nitrides, using the field enhancement near the tunable ENZ regime can enable a wide range of nonlinear optical phenomena, including all-optical switching, time refraction, and high-harmonic generation.

7.
Cells ; 11(19)2022 09 22.
Article in English | MEDLINE | ID: mdl-36230925

ABSTRACT

Neurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer's disease (AD), including intra- and extracellular amyloid-beta (Aß) peptide aggregates. Aß peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1. However, this is precluded by cleavage of APP by the non-amyloidogenic alpha secretase, ADAM10. Previous studies have found that BACE1 expression was increased in the CNS of PWH with HAND as well as animal models of HAND. Further, BACE1 contributed to neurotoxicity. Yet in in vitro models, the role of ADAM10 and its potential regulatory mechanisms had not been examined. To address this, primary rat cortical neurons were treated with supernatants from HIV-infected human macrophages (HIV/MDMs). We found that HIV/MDMs decreased levels of both ADAM10 and Sirtuin1 (SIRT1), a regulator of ADAM10 that is implicated in aging and in AD. Both decreases were blocked with NMDA receptor antagonists, and treatment with NMDA was sufficient to induce reduction in ADAM10 and SIRT1 protein levels. Furthermore, decreases in SIRT1 protein levels were observed at an earlier time point than the decreases in ADAM10 protein levels, and the reduction in SIRT1 was reversed by proteasome inhibitor MG132. This study indicates that HIV-associated insults, particularly excitotoxicity, contribute to changes of APP secretases by downregulating levels of ADAM10 and its regulator.


Subject(s)
Alzheimer Disease , HIV Infections , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Humans , Membrane Proteins/metabolism , N-Methylaspartate , Proteasome Inhibitors , Rats , Receptors, N-Methyl-D-Aspartate , Sirtuin 1/metabolism
8.
Nat Commun ; 11(1): 5581, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149216

ABSTRACT

The chromatin landscape of human brain cells encompasses key information to understanding brain function. Here we use ATAC-seq to profile the chromatin structure in four distinct populations of cells (glutamatergic neurons, GABAergic neurons, oligodendrocytes, and microglia/astrocytes) from three different brain regions (anterior cingulate cortex, dorsolateral prefrontal cortex, and primary visual cortex) in human postmortem brain samples. We find that chromatin accessibility varies greatly by cell type and, more moderately, by brain region, with glutamatergic neurons showing the largest regional variability. Transcription factor footprinting implicates cell-specific transcriptional regulators and infers cell-specific regulation of protein-coding genes, long intergenic noncoding RNAs and microRNAs. In vivo transgenic mouse experiments validate the cell type specificity of several of these human-derived regulatory sequences. We find that open chromatin regions in glutamatergic neurons are enriched for neuropsychiatric risk variants, particularly those associated with schizophrenia. Integration of cell-specific chromatin data with a bulk tissue study of schizophrenia brains increases statistical power and confirms that glutamatergic neurons are most affected. These findings illustrate the utility of studying the cell-type-specific epigenome in complex tissues like the human brain, and the potential of such approaches to better understand the genetic basis of human brain function.


Subject(s)
Astrocytes/metabolism , Chromatin/metabolism , GABAergic Neurons/metabolism , Microglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Schizophrenia/metabolism , Animals , Chromatin/genetics , Epigenesis, Genetic , Gene Expression Regulation/genetics , Gyrus Cinguli/cytology , Gyrus Cinguli/metabolism , Humans , Mice , Mice, Transgenic , MicroRNAs/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Risk Factors , Schizophrenia/genetics , Transcription Factors/metabolism , Visual Cortex/cytology , Visual Cortex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...